
Journal of Global Optimization 26: 387–418, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

387

Global Optimization of Multiplicative Programs

HONG-SEO RYOO1 and NIKOLAOS V. SAHINIDIS2,∗
1University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, 842 West
Taylor Street, Chicago, IL 60607, USA; 2University of Illinois at Urbana-Champaign, Department
of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Urbana, IL 61801, USA
(∗Corresponding author. e-mail: nikos@uiuc.edu)

Abstract. This paper develops global optimization algorithms for linear multiplicative and general-
ized linear multiplicative programs based upon the lower bounding procedure of Ryoo and Sahinidis
[30] and new greedy branching schemes that are applicable in the context of any rectangular branch-
and-bound algorithm. Extensive computational results are presented on a wide range of problems
from the literature, including quadratic and bilinear programs, and randomly generated large-scale
multiplicative programs. It is shown that our algorithms make possible for the first time the solution
of large and complex multiplicative programs to global optimality.

Key words: Multiplicative programs, Branch-and-reduce, Greedy branching

1. Introduction

Multiplicative programs involve products of variables and functions in their object-
ive or constraints. The most-studied multiplicative programs are linear multiplicat-
ive programs (LMP s) and generalized linear multiplicative programs (GLMP s):

(LMP)

∣∣∣∣∣∣∣∣∣
globmin f (x) =

p∏
j=1

(
cT
j x + dj

)
s. t. Ax ≤ b

x ∈ X := {x ∈ R
n : −∞ < l ≤ x ≤ u < +∞}

where cj ∈ R
n, dj ∈ R for j = 1, . . . , p, A ∈ R

m×n, b ∈ R
m, and cT

j x + dj > 0
for j = 1, . . . , p for all x ∈ X for which Ax ≤ b; and

(GLMP)

∣∣∣∣∣∣∣
globmin f (x) =

t∑
i=1

pi∏
j=1

(
cT
ij x + dij

)
s. t. x ∈ M := {x ∈ X : Ax ≤ b}

where cij ∈ R
n, and dij ∈ R, i = 1, . . . , t, j = 1, . . . , pi and A ∈ R

m×n, b ∈ R
m.

Above, we defined each term in the objective function of GLMP to be the
product of arbitrarily many, unconstrained in sign linear functions as opposed to

388 HONG-SEO RYOO AND NIKOLAOS V. SAHINIDIS

the conventional definition of GLMP which involves the sum of the product of
only two positive linear functions (e.g., [13, 31]). With our broader definition, one
can see quadratic programming (QP), bilinear programming (BLP), as well as
LMP fall into the category of GLMP .

LMP and GLMP have attracted considerable attention in the literature be-
cause of their large number of practical applications in various fields of study,
including microeconomics [8], financial optimization [16, 22], VLSI chip design
[6, 21], decision tree optimization [1], portfolio optimization [16, 23], plant layout
design [28], multicriteria optimization problems [9], robust optimization [26], and
data mining/pattern recognition [2].

LMP is a quasiconcave program [7, 34], and may possess several local minima
[12]. GLMP is obviously multiextremal, for its special cases such as LMP , BLP ,
and QP are multiextremal. Both LMP and GLMP are known to be N P -hard
problems [14, 24].

In the last decade, many solution algorithms have been proposed for globally
solving LMP and GLMP , most notably by Konno and co-workers [11, 12, 14,
17, 15, 18]. Solution algorithms for multiplicative methods can be classified as
parameterization-based methods [11, 12, 14, 17], outer-approximation methods
[15, 18, 35], a vertex enumeration method [27], a method based on image space
analysis [7], a primal and dual simplex method [31], and a cutting plane method in
outcome space [4]. Heuristic methods have also been developed [3, 20].

On the computational front, problems reported solved thus far in the literature
have been ‘small’ in size and ‘simple’ in terms of the objective function structure.
To wit, for LMP with the objective function a product of two functions (p = 2),
random instances of (m, n) = (220, 200) are the largest size problems solved in the
literature [12]. For p = 5, however, the size of largest problems solved drastically
reduces to only (m, n) = (20, 30) [18]. A similar situation holds for GLMP . For
GLMP with t = 2 and p1 = p2 = 2, the size of the largest problems solved
in the literature is (m, n) = (70, 50), while for GLMP with t = 4 and pi = 2,
(i = 1, . . . , 4), the largest problems reported have a constraint matrix of size
(m, n) = (30, 50) [18]. Furthermore, no computational results for GLMPs with
pi > 2 have been reported in the literature so far.

The primary contributions of this paper are two. First, we develop global optim-
ization algorithms that make possible for the first time the solution of large-scale
LMP s and GLMP s. Second, we propose a new branching scheme that can be
used in the context of any rectangular branch-and-bound algorithm.

The paper is organized as follows. Section 2 presents the skeleton of the pro-
posed algorithms. They are based on our earlier branch-and-reduce approach [29].
Section 3 presents the two bounding schemes that we propose for LMP and
GLMP ; these rely on our recent work on bounding monomials [30]. In Section 4,
we develop greedy branching rules for rectangular branch-and-bound algorithms.
The idea behind greedy branching is to select the branching variable and position
such that the largest possible lower bound improvement is made in the immediate

GLOBAL OPTIMIZATION OF MULTIPLICATIVE PROGRAMS 389

descendants of the current node. A suitable measure of lower bound improvement
is introduced for this purpose and used in the development of greedy branching
rules for various classes of problems including multiplicative programs. Under this
framework, it is shown that the classical bisection branching rule is greedy when
applied to separable concave minimization problems. Section 5 briefly reviews a set
of range contraction mechanisms we incorporate in our algorithms. The proposed
algorithms are next illustrated on two examples from the literature in Section 6.
Extensive computational experiments are reported in Section 7. Here, we solve a
wide variety of test problems from the literature as well as randomly generated
problems and present computational comparisons with earlier approaches. In sum-
mary, our algorithms can solve LMPs with p = 5 and (m, n) = (200, 200) in
a matter of minutes on a computer equipped with a slow 133 MHz processor and
only 64 MB of memory. We also report for the first time the solution of GLMP s
with more than two products (pi > 2) in every objective function term. Finally,
concluding remarks are presented in Section 8.

2. The Branch-and-Reduce Algorithm

The branch-and-reduce global optimization algorithm of [29] constitutes the back-
bone of algorithms for LMP and GLMP that are developed in this paper. We
briefly summarize the steps of this algorithm.

Let P be the nonconvex problem to be solved and X be the simple bounds
constraints as defined in LMP above. Also, let Pi be problem P defined over
Xi ⊆ X.

ALGORITHM branch-and-reduce;

Initialization Step.
Set the lower and upper bounds of the search tree: U ← +∞ and L ← −∞. Put

problem P in A, the list of ‘active’ problems to be solved. Set k = 1 and
go to Step k.1.

Iteration k:
Step k.1. If A is empty, stop. Otherwise, select and remove Pk from A. Go to

Step k.2.
Step k.2. Preprocess Pk using feasibility-based range reduction techniques. Lower

and upper bound Pk. Update the lower and/or upper bounds of the search
tree and delete all inferior nodes. If the upper and lower bounds are equal
(or within a prespecified level), stop. Otherwise, postprocess Pk using
both feasibility-based and optimality-based range reduction techniques.
If the bounds on variables are substantially improved, repeat Step k.2.
Otherwise, go to Step k.3.

Step k.3. Partition Xk into Xk1 and Xk2 and add two subproblems Pk1 and Pk2 to A.
Set k ← k + 1 and go to Step k.1.

390 HONG-SEO RYOO AND NIKOLAOS V. SAHINIDIS

Compared to classical branch and bound algorithms, branch and reduce places
a considerable amount of effort in preprocessing and postprocessing steps aimed at
reducing ranges of variables and tightening relaxations at every node of the search
tree.

3. Lower Bounding

By the use of an additional variable for each linear function, LMP and GLMP

transform into equivalent programs whose objective function is, respectively, a
monomial function of the type:

p∏
j=1

yj (1)

and the sum of t monomial functions. Of course, the relationships among intro-
duced variables and the linear functions in the original objective must be added to
the constraint sets:

(LMP)

∣∣∣∣∣∣∣∣∣
min f (y) =

p∏
j=1

yj

s. t. x ∈ M
yj = cT

j x + dj , j = 1, . . . , p

and

(GLMP)

∣∣∣∣∣∣∣∣∣
min f (y) =

t∑
i=1

pi∏
j=1

yij

s. t. x ∈ M
yij = cT

ij x + dij , i = 1, . . . , t; j = 1, . . . , pi

For a function f and optimization program P , in the sequel we use:

f : a convex lower bounding function of f

P : a convex lower bounding program of P

3.1. LOWER BOUNDING FOR LMP

For j = 1, . . . , p, let yL
j = minx∈M cT

j x + dj and yU
j = maxx∈M cT

j x + dj . As
cT
j x + dj > 0 for all x ∈ M, it follows that yL

j > 0 for all j .

GLOBAL OPTIMIZATION OF MULTIPLICATIVE PROGRAMS 391

We first convert LMP into an equivalent separable program:

(LMP ′)

∣∣∣∣∣∣
globmin f (y) = ∑p

j=1 log(yj)

s. t. x ∈ M
yj = cT

j x + dj , j = 1, . . . , p

The monotonic increasing property of the logarithmic function directly yields
the following:

PROPOSITION 1 LMP and LMP ′ are equivalent programs.

LMP ′ of separable LMP ′ is easy to construct:

(LMP ′) :

∣∣∣∣∣∣∣∣∣
min f (y) =

p∑
j=1

(
αjyj + βj

)
s. t. x ∈ M

yj = cT
j x + dj , j = 1, . . . , p

where αj = (log yU
j − log yL

j)/(yU
j − yL

j), βj = log yL
j − αjy

L
j for j = 1, . . . , p.

This lower bounding scheme is called Loga (the Logarithmic transformation
method) and is primarily used for its simplicity. In addition, as noted in [30], Loga
constructs a lower bounding function of (1) that is tighter than competing lower
bounding functions in the interior of the box of variable bounds.

3.2. LOWER BOUNDING FOR GLMP

We propose the rAI (recursive Arithmetic Intervals) method for lower bounding of
GLMP . rAI is a two-step procedure:

Step 1. Recursively replace each bilinear term in (1) with a new variable until (1)
is replaced by a single variable. An example is:

y1y2︸︷︷︸
=:yp+1

y3

︸ ︷︷ ︸
=:yp+2

...

. . . yp−1

︸ ︷︷ ︸
=:y2p−2

yp

︸ ︷︷ ︸
=:y2p−1

Step 2. Linearly lower bound each of the p − 1 introduced variables, i.e., the
bilinear terms, with the maximum of two linear functions:

yj = yj1yj2 ≥ max

{
yj1y

U
j2

+ yU
j1

yj2 − yU
j1

yU
j2

yj1y
L
j2

+ yL
j1

yj2 − yL
j1

yL
j2

}

392 HONG-SEO RYOO AND NIKOLAOS V. SAHINIDIS

for all j = p + 1, . . . , 2p − 1, where j1 and j2 are the indices of the
problem variables whose product is identified with variable j . By interval
arithmetic arguments, the bounds on the introduced variables are given by

yL
j := min

{
yL

j1
yL

j2
, yL

j1
yU

j2
, yU

j1
yL

j2
, yU

j1
yU

j2

}
and

yU
j := max

{
yL

j1
yL

j2
, yL

j1
yU

j2
, yU

j1
yL

j2
, yU

j1
yU

j2

}
for j = p + 1, . . . , 2p − 1.

This scheme is also easy to implement and provides tight bounds: we show in
[30] that rAI yields the convex (and also the concave) envelope of (1) over the unit
hypercube. The so constructed GLMP is an m′ × n′ LP:

(GLMP)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min f (y) =
t∑

i=1

yi,2pi−1

s. t. x ∈ M
yij = cT

ij x + dij ,

i = 1, . . . , t; j = 1, . . . , pi

yij ≥ yij1y
U
ij2

+ yU
ij1

yij2 − yU
ij1

yU
ij2

,

i = 1, . . . , t; j = pi + 1, . . . , 2pi − 1
yij ≥ yij1y

L
ij2

+ yL
ij1

yij2 − yL
ij1

yL
ij2

,

i = 1, . . . , t; j = pi + 1, . . . , 2pi − 1

where m′ does not include the bounds on the x variables:

m′ :=m + 3
t∑

i=1

pi − 2t

n′ :=n + 2
t∑

i=1

pi − t.

4. Branching

4.1. GREEDY BRANCHING

A branching operation in rectangular branch-and-bound is concerned with two de-
cisions: the selection of the branching variable and the determination of its branch-
ing position. In general, these two decisions are made based upon some strategy
that aims to minimize the search tree size, thus expediting termination of the search
process.

GLOBAL OPTIMIZATION OF MULTIPLICATIVE PROGRAMS 393

This section develops the ‘greedy branching’ scheme for a general rectangular
branch-and-bound algorithm that selects the branching variable and the branching
point in order to achieve the largest reduction in the relaxation gap — the difference
between upper and lower bounds — in the immediate descendants of the current
problem after branching.

Consider a separable nonconvex problem P defined over the set of variable
bounds [yL, yU] at the current node of a branch and bound algorithm. Suppose that
yk appears in nonconvex functions fki

(yk), i = 1, . . . , nk, in the objective function
and/or constraints of P .

4.1.1. Greedy Branching Variable Selection

For illustration, consider fk1 . We define a measure of the nonconvexity that variable
yk contributes to P via function fk1 as

∫ yU
k

yL
k

[
fk1(yk) − f

k1
(yk)

]
dyk, (2)

which is the area between fk1(yk) and f
k1

(yk). According to this criterion, it fol-
lows that the variable contributing the maximum amount to the above measure of
nonconvexities of the problem is given by:

j ∈ argmax
k

{
nk∑
i=1

∫ yU
k

yL
k

[
fki

(yk) − f
ki
(yk)

]
dyk

}
.

The above definite integrals admit closed form solutions when fki
s have antideriv-

atives.
Consider LMP ′. Recall that, for LMP ′ and LMP ′, fj (yj) = log yj and f

j
(yj)

= αjyj + βj where αj = (log yU
j − log yL

j)/(yU
j − yL

j), βj = log yL
j − αjy

L
j for

j = 1, . . . , p.

PROPOSITION 2 Consider LMP ′ and LMP ′. Variable yj with

j ∈ argmax
1≤k≤p

{
log

(
(yU

k)yU
k

(yL
k)yL

k

)
− αk

(
(yU

k)2 − (yL
k)2

)
2

− (βk + 1)(yU
k − yL

k)

}

is one that contributes most to the nonconvexity of LMP ′.
Proof. As LMP ′ is separable, a greedy branching variable is one with the largest

∫ yU
k

yL
k

[
log(yk) − αkyk − βk

]
dyk.

Carrying out this definite integral yields the result. �

394 HONG-SEO RYOO AND NIKOLAOS V. SAHINIDIS

4.1.2. Greedy Branching Point Selection

For variable, say yj , selected for branching, let:

f (yj) :=
nj∑
i=1

fki
(yj)

Its underestimator is:

f (yj) :=
nj∑
i=1

f
ki
(yj).

Selecting the greedy branching point for yj so as to maximize the reduction in
the underestimation gap by the maximum amount after the branching operation is
equivalent to locating point cj ∈ [yL

j , yU
j] such that the quantity

∫ cj

yL
j

{
f (yj) − f left(yj)

}
dyj +

∫ yU
j

cj

{
f (yj) − f right(yj)

}
dyj

is minimized, where f left and f right are appropriately derived over their respective
bounds [yL

j , cj] and [cj , y
U
j] using standard relaxation techniques [25]. The geo-

metric interpretation of this greedy branching point selection rule is provided in
Figure 1. Here, the branching point cj is chosen such that (cj , fj (cj)) and the line
segment joining (yL

j , fj (y
L
j)) and (yU

j , fj (y
U
j)) as the base forms a triangle with

the largest area that fits between fj and f
j
. This area represents the amount of

reduction in the relaxation gap after the interval [yL
j , yU

j] is partitioned at cj and
explains why cj brings about the largest reduction in the relaxation gap.

The greedy branching position selection rule is formally stated below:

THEOREM 1 Let f be a univariate concave function of y ∈ [yL, yU]. The fol-
lowing hold:
(i) If f (y) is continuous on [yL, yU] and differentiable on (yL, yU), branching at
c ∈ (yL, yU) satisfying

f ′(c) = f (yU) − f (yL)

yU − yL
(3)

yields the maximum reduction in the relaxation gap in the subtree generated imme-
diately after branching.
(ii) Suppose f (y) is continuous and differentiable on (yL, yU). If there exists c ∈
(yL, yU) satisfying (3) in (i), branching at c yields the maximum reduction in the
relaxation gap in the subtree generated after branching. Otherwise, branching at

c ∈ argmax

{
lim
y↓yL

f (y) − f (yL), lim
y↑yU

f (y) − f (yU)

}

GLOBAL OPTIMIZATION OF MULTIPLICATIVE PROGRAMS 395

yL yU

f

f (y)

(y)

Figure 1. Geometric interpretation of greedy branching point selection rule.

yields the maximum reduction in the relaxation gap in the subtree generated after
branching.
(iii) Suppose f (y) is discontinuous on [yL, yU] and nondifferentiable on (yL, yU).
Let yL = y1, . . . , yl = yU denote the points where f is nondifferentiable. Let

ck ∈ argmax
{
f (ci) − f (ci), i = 3, . . . , l − 1

}
where ci ∈ (yi−1, yi) satisfies (3) in (i). If there exists c1 ∈ (y1, y2) and cl ∈
(yl−1, yl) satisfying (3), then

c ∈ argmax
{
f (ci) − f (ci), i = 1, k, l

}
;

if c1 exists but not cl , then

c ∈ argmax

{
f (ci) − f (ci), i = 1, k; lim

y↑yl

f (y) − f (yl)

}
;

if cl exists but not c1, then

c ∈ argmax

{
lim
y↓y1

f (y) − f (y1); f (ci) − f (ci), i = k, l

}
;

otherwise,

c ∈ argmax

{
lim
y↓y1

f (y) − f (y1), f (ck) − f (ck), lim
y↑yl

f (y) − f (yl)

}

396 HONG-SEO RYOO AND NIKOLAOS V. SAHINIDIS

is the greedy branching point that yields the maximum reduction in the relaxation
gap in the subtree generated after branching.

If f is nonlinear on (yL, yU), c in (i) and (ii) are uniquely determined.
Proof. (i) Referring to Figure 1, we note that the base of the triangle whose area

we want to maximize is fixed while the height of the triangle changes as a function
of y ∈ [yL, yU]. The height of the triangle is defined as

h = cos(θ)(f (y) − f (y)),

where

θ = arctan

(
f (yU) − f (yL)

yU − yL

)
.

Therefore, finding a greedy branching point reduces to solving the following uni-
variate concave maximization problem:

(MAXDEV)

∣∣∣∣ max f (y) − f (y)

s. t. yL ≤ y ≤ yU

A global maximum of MAXDEV is attained at a point satisfying the first-order
necessary condition for f or at an endpoint.
(ii) If there exists c ∈ (yL, yU) satisfying (3), branching at c obviously reduces the
relaxation gap by the largest amount.

For the other case, without loss of generality, let us re-define f as:

f (y) := min{fm(y), fL(y), fU (y)}
where

fm(y) :=




limy↓yL f (y), if y = yL

limy↑yU f (y), if y = yU

f (y), for y ∈ (yL, yU)

fL(y) :=
{

f (yL), if y = yL

+∞, for (yL, yU]

fU(y) :=
{

f (yU), if y = yU

+∞, for [yL, yU)

This re-definition of f brings about the attainment of the supremum of MAXDEV
at an endpoint of [yL, yU].
(iii) As f is concave, f is continuous on [yi−1, yi], differentiable on (yi−1, yi)

for i = 3, . . . , l − 1, and continuous and differentiable on (yi−1, yi) for i = 2, l.
Applying the proof of (i) above for i = 2, l and the proof of (ii) for i = 3, . . . , l−1,
we prove the assertions.

The uniqueness result for the nonlinear case for (i) and (ii) follows from mono-
tonicity of a nonlinear univariate concave function. �

GLOBAL OPTIMIZATION OF MULTIPLICATIVE PROGRAMS 397

COROLLARY 1 Let yk be the variable selected for branching in LMP ′. Then,
branching at

ck = yU
k − yL

k

log yU
k − log yL

k

yields the maximum reduction in the relaxation gap in the subtree generated after
branching.

Proof. We have f (yk) = log yk with f ′(ck) = c−1
k . As log yk is continuous on

[yL
k , yU

k] and differentiable on (yL
k , yU

k), we apply Theorem 1.(i) and solve for ck

in f ′(ck) = αk, where

αk = log yU
k − log yL

k

yU
k − yL

k

. �

Next, we consider a separable concave quadratic program.

COROLLARY 2 Let yk be the variable selected for branching with f (yk) = −y2
k .

Then, the bisection, i.e., branching at

ck = yL
k + yU

k

2

yields the maximum reduction in the relaxation gap in the subtree generated after
branching.

Proof. Apply Theorem 1.(i) with f (yk) = −y2
k : set f ′(ck) = −2ck = αk =

−(yL
k + yU

k) and solve for ck. �
REMARK 1 (i) Theorem 1 can alternatively be stated as follows:

Let f be a univariate concave function of y ∈ [yL, yU]. Then, branching at
c ∈ [yL, yU] satisfying

f (yU) − f (yL)

yU − yL
∈ ∂f (c)

yields the maximum reduction in the relaxation gap in the subtree generated after
branching, where ∂f (y0) of f at y0 is the set of s ∈ R satisfying

f (y) ≤ f (y0) + 〈s, y − y0〉
for all y ∈ [yL, yU] (i.e., the superdifferential of f .)
(ii) For concave programs, [19] proposes a branching rule to minimize the collect-
ive area of the underestimating gap of the child subproblems. Their rule branches
at the same point as the greedy rule of Corollary 2.

398 HONG-SEO RYOO AND NIKOLAOS V. SAHINIDIS

REMARK 2 While the greedy branching concept above was presented in the con-
text of separable formulations, it can be easily applied to nonseparable formulations
as well. One possibility is convert nonseparable formulations to separable ones
using standard transformations [25]. Note that this transformation does not need
to be applied for the purpose of constructing a relaxation; it suffices to use it to
calculate violations that are then transferred back to original problem variables.
Yet another possibility is to work directly with the nonseparable formulations and
define the nonconvexity measures in (2) for each variable after fixing all other
variables to the solution of the relaxation or some other judiciously chosen point.

4.2. BRANCHING SCHEMES FOR MULTIPLICATIVE PROGRAMS

The greedy branching is proposed for LMP :

OPERATION greedy branching — LMP ;
begin

select variable yj for branching via Proposition 2;
compute cj via Corollary 1;
branch at cj ;

end;

It is well-known that the gap between a bilinear function

f (y) = yiyj

and its underestimator

f (y) = max

{
yiy

U
j + yU

i yj − yU
i yU

j

yiy
L
j + yL

i yj − yL
i yL

j

}

is maximum at the midpoint of the box [yL
i , yU

i] × [yL
j , yU

j]. This is exploited in
our greedy-like branching scheme for GLMP . Let

mpv := y
mp

i y
mp

j − max

{
y

mp

i yU
j + yU

i y
mp

j − yU
i yU

j

y
mp

i yL
j + yL

i y
mp

j − yL
i yL

j

}

where y
mp

i := yL
i +yU

i

2 and y
mp

j := yL
j +yU

j

2 . We use mpv to compute the com-
pounded violation for each introduced variable. This compounded violation for an
introduced variable reflects the amount of nonconvexities in the current problem
formulation due to the variable by taking into account the number of variables
that appear in the monomial term containing this variable via introduced bilinear
relationships.

GLOBAL OPTIMIZATION OF MULTIPLICATIVE PROGRAMS 399

OPERATION branching — GLMP

begin
set violation(ij) ← 0 for all i = 1, . . . , t and j = 1, . . . , 2pi − 1;
for i = 1, . . . , t and pi ≥ 2 do

for j = pi + 1, . . . , 2pi − 1 do
compute mpv for yij = yij1yij2 ;
set violation(ij) ← violation(ij) + mpv;
set violation(ij1) ← violation(ij1) + mpv;
set violation(ij2) ← violation(ij2) + mpv;

enddo
enddo
select k ∈ argmax{violation(ij) : i = 1, . . . , t; j = 1, . . . , pi};
bisect [yL

k , yU
k];

end;

5. Range Reduction

Two types of range reduction mechanisms — feasibility-based and optimality-
based — are proposed in [29] to accelerate the convergence of global optimization
algorithms. In general, the former are applied in the preprocessing of a branch and
bound node whereas both types are applied during the postprocessing phase of the
node.

As for the feasibility-based range reduction, as LMP and GLMP are linearly
constrained, we improve bounds on variables via applying linearity-based range
reduction to the set of all linear constraints

∑n
j=1 aij xj ≤ bi (i = 1, . . . , m) of the

problem:

TECHNIQUE linearity-based range reduction;
for i = 1, . . . , m do

begin

compute rUi :=
n∑

j=1

max{aij x
L
j , aij x

U
j };

compute rLi :=
n∑

j=1

min{aij x
L
j , aij x

U
j };

if rLi > bi then
stop. problem is infeasible;

elseif rUi < bi then
constraint is redundant. delete it from problem formulation;

else
for j = 1, . . . , n do

if aij > 0 then

400 HONG-SEO RYOO AND NIKOLAOS V. SAHINIDIS

xU
j ← min

{
xU

j ,
bi − rLi + min{aij x

L
j , aij x

U
j }

aij

}
;

elseif aij < 0 then

xL
j ← max

{
xL

j ,
bi − rUi + max{aij x

L
j , aij x

U
j }

aij

}
;

endif;
enddo

endif;
end;

enddo

For GLMP , the bilinear relationships among introduced variables yk = yiyj

can also be exploited to further improve the bounds on variables:

TECHNIQUE bilinearity-based range reduction;
begin

yL
k ← max

{
yL

k , min
(
yL

i yL
j , yL

i yU
j , yU

i yL
j , yU

i yU
j

)}
;

yU
k ← min

{
yU

k , max
(
yL

i yL
j , yL

i yU
j , yU

i yL
j , yU

i yU
j

)}
;

if 0
∈ [yL
j , yU

j] then

yL
i ← max

{
yL

i , min

{
yL

k

yL
j

,
yL

k

yU
j

,
yU

k

yL
j

,
yU

k

yU
j

}}
;

yU
i ← min

{
yU

i , max

{
yL

k

yL
j

,
yL

k

yU
j

,
yU

k

yL
j

,
yU

k

yU
j

}}
;

endif;
if 0
∈ [yL

i , yU
i] then

yL
j ← max

{
yL

j , min

{
yL

k

yL
i

,
yL

k

yU
i

,
yU

k

yL
i

,
yU

k

yU
i

}}
;

yU
j ← min

{
yU

j , max

{
yL

k

yL
i

,
yL

k

yU
i

,
yU

k

yL
i

,
yU

k

yU
i

}}
;

endif;
end;

As for the optimality-based range reduction, we utilize the range contraction
tools for simple bounds constraints xL ≤ x ≤ xU that we developed in [29]
(Corollaries 2 and 3). Let L be the objective value of the current node subproblem,
xR its primal solution, λj (j=1, . . . , n) its dual prices, and U the known upper
bound of the problem to be solved. Then:

GLOBAL OPTIMIZATION OF MULTIPLICATIVE PROGRAMS 401

TECHNIQUE optimality-based range reduction;
for j = 1, . . . , n do

if xR
j = xL

j and its dual price λj > 0, then

xU
j ← min

{
xU

j , xL
j + U − L

λj

}
endif;
if xR

j = xU
j and its dual price λj > 0, then

xL
j ← max

{
xL

j , xU
j − U − L

λj

}
endif;

enddo

Furthermore, we utilize the objective function cut

objective function value ≤ U

for further effective range reduction. For example, we require for LMP that
p∏

j=1

yj ≤ U

and improve the upper bounds on variables yj (j = 1, . . . , p) via

yU
j ←− min

{
yU

j ,
U∏

i
=j yL
i

}
.

6. Illustrative Examples

This section demonstrates the steps of the proposed algorithms on two problems
from the literature.

6.1. LMP ILLUSTRATIVE EXAMPLE

The following example is taken from [7] and is a modified version of a problem
that originally appeared in [10]:

(Ex − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

globmin (x1 + x2)(x1 − x2 + 7)

s. t. FS1 :=




x ∈ R
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2x1 + x2 ≤ 14
x1 + x2 ≤ 10

−4x1 + x2 ≤ 0
2x1 + x2 ≥ 6
x1 + 2x2 ≥ 6
x1 − x2 ≤ 3

x1 ≤ 5




402 HONG-SEO RYOO AND NIKOLAOS V. SAHINIDIS

Ex − 1 is first converted into an equivalent problem by introducing two addi-
tional variables for the linear functions in the objective and then taking the logar-
ithmic transformation on the objective function:

(Ex − 1′)

∣∣∣∣∣∣∣∣
globmin log y1 + log y2

s. t. FS1′ :=

(x, y) ∈ R

4

∣∣∣∣∣∣
x ∈ FS1

y1 − x1 − x2 = 0
y2 − x1 + x2 − 7 = 0




The initialization step sets U ← +∞ and L ← −∞. After y1 and y2 are min-
imized and maximized over FS1, and linearity-based range reduction is applied
to the last two constraints of FS1′, the algorithm improves the bounds on variables
to:

X ← {(x, y) ∈ R
4 : (1.99, 7.99, 9.97, 1) ≤ (x, y) ≤ (2.01, 8.01, 10, 1.01)}

During the process of minimization and maximization of the introduced variables,
feasible solutions to the problem are obtained. In this example, we find that the
best solution amongst all these solutions is x = (2, 8) with f (x) = 10. Hence,
U ← 10. Next, X1 ← X, P1 ← Ex − 1′, P1 is put in A, and P1 is selected for
solution.

Before lower bounding, the algorithm checks if the current formulation of P1

can be further improved by using linearity-based range reduction in conjunction
with the objective function cut. Through this, the bounds on variables improve to:

X1 ← {(x, y) ∈ R
4 : (2, 8, 10, 1) ≤ (x, y) ≤ (2, 8, 10, 1)}

When P1 constructed on X1 is solved, L ← 10 is obtained at solution x = (2, 8).
Hence, the current best solution is updated to x∗ ← (2, 8). Finally, as U = L, the
algorithm terminates. The algorithm proves global optimality of x∗ = (2, 8) at the
root node of the branch-and-reduce search tree.

6.2. GLMP ILLUSTRATIVE EXAMPLE

The following example is taken from [11]:

(Ex − 2)

∣∣∣∣∣∣∣∣∣∣∣∣

globmin x1 + (x1 − x2 + 5)(x1 + x2 − 1)

s. t. FS2 :=




x ∈ R
2

∣∣∣∣∣∣∣∣∣∣

2x1 + 3x2 ≥ 9
3x1 − x2 ≤ 8

−x1 + 2x2 ≤ 8
x1 + 2x2 ≤ 12

x1 ≥ 0




GLOBAL OPTIMIZATION OF MULTIPLICATIVE PROGRAMS 403

Again, the problem is first converted into an equivalent problem:

(Ex − 2)

∣∣∣∣∣∣∣∣∣∣∣∣

globmin y1,1 + y2,3

s. t. FS2′ :=




(x, y) ∈ R
5

∣∣∣∣∣∣∣∣∣∣

x ∈ FS2
y1,1 = x1

y2,1 = x1 − x2 + 5
y2,2 = x1 + x2 − 1

y2,3 = y2,1y2,2




Ex − 2 is made P1, put in A, and then selected for solution. Preprocessing —
minimizing and maximizing the introduced variables in turn and applying linearity-
and bilinearity-based range reduction — improves the bounds on variables to:

X1 ← {(x, y) ∈ R
5 : (0, 3, 0, 0, 2, 0) ≤ (x, y) ≤ (2, 5, 2, 2, 6, 4)}

During this process, the algorithm updates U ← 4 with x∗ = (0, 3).
Next, linearity- and bilinearity-based range reduction are applied to constraint

set FS2′ but with no improvement on variable bounds. Hence, P1 is constructed on
X1:

(P1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min y1,1 + y2,3

s. t. FS2′ :=




(x, y) ∈ R
5

∣∣∣∣∣∣∣∣∣∣∣∣

x ∈ FS2
y1,1 = x1

y2,1 = x1 − x2 + 5
y2,2 = x1 + x2 − 1

6y2,1 + 2y2,2 − y2,3 ≤ 12
2y2,1 − y2,3 ≤ 0




Solving P1 updates L ← 2, x∗ ← (0, 4), and U ← 3. As inequalities −x1 +
2x2 ≥ 8, x1 ≥ 0, and y1,1 ≥ 0 are active at x∗ = (0, 4), the optimality-based
range reduction (OBRR) can be performed on these constraints. Here, OBRR is
performed only on x1 ≥ 0 and y1,1 ≥ 0 using their dual multipliers 1 and 1,
respectively. Applying OBRR to x1 ≥ 0 with λ = 1,

xU
1 ← min

{
2, 2 − 3 − 2

1

}
and the bounds on x1 improve to 0 ≤ x1 ≤ 1. Likewise, applying OBRR to y1,1 ≥ 0
with λ = 1 improves bounds to 0 ≤ y1,1 ≤ 1. This improvement on bounds is
deemed substantial, so the bounding step of the algorithm is repeated.

The possibility of further tightening of the current formulation of P1 is first
checked with linearity- and bilinearity-based range reduction. This improves the
bounds on variables to:

X1 ← {(x, y) ∈ R
5 : (0, 4, 0, 0.99, 3, 2.95) ≤ (x, y)

404 HONG-SEO RYOO AND NIKOLAOS V. SAHINIDIS

≤ (0.09, 4.0086, 0.17, 1.00, 3.02, 3)}
When tighter P1 is constructed with these new bounds on variables and solved,

L ← 3 and x∗ ← (0, 4). Now, as U = L, the algorithm terminates at the root node
of the search tree with global optimum f ∗ = 3 at x∗ = (0, 4).

7. Computational Experiments

In this section, we provide extensive computational results with the proposed al-
gorithms for LMP and GLMP on problems from the literature as well as on
random instances of problems of various sizes and objective function structures.
We also provide comparative computational results with prior approaches for solv-
ing LMP and GLMP . Our algorithms are coded in Fortran 90 and compiled with
O3 option. All our computations are carried out on an IBM RS/6000 Model 43P
equipped with a 133 MHz Power PC processor and 64 MB memory. Unless noted
otherwise, we use CPLEX 6.0 as the LP solver. We adopt the following notation:

εa: absolute termination criterion

(i.e., search process terminates if U − L ≤ εa)

εr : relative termination criterion

(i.e., search process terminates if U − L ≤ εr |L|)
NT : total number of branch-and-reduce iterations

(nodes in search tree)

NO : node where global optimum is found

NM : maximum number of nodes stored during search process

Time: CPU seconds required in solving a problem

Avg: average performance by an algorithm on

a set of random problems

Std: standard deviation of performances by an algorithm on

a set of random problems

7.1. SMALL TEST PROBLEMS FROM THE LITERATURE

7.1.1. LMP and GLMP Benchmarks

We collected LMP and GLMP problems from the literature and solved them
using εa = 10−6. These results are summarized in Table 1. Clearly, these problems
are easy to solve with the proposed algorithms as most are solved at the root node
of the branch-and-bound tree. It should be noted that, in many cases, the first LP
relaxation of these problems does not provide an exact lower bound. Instead, the LP
bound becomes exact only after several rounds of solving this LP and strengthening

GLOBAL OPTIMIZATION OF MULTIPLICATIVE PROGRAMS 405

Table 1. Computational results on small test problems from the literature

Problem Proposed algorithm

Name Source Type t pi (m, n) NT NO NM Time

FP1 [7] LMP 1 2 (6,2) 1 0 1 0.0

FP2 [7] LMP 1 2 (7,2) 1 1 1 0.0

FP3 [7] GLMP ∗ 1 2 (6,2) 1 0 1 0.0

KK1 [11] GLMP 2 (1,2) (4,2) 1 1 1 0.0

KK2 [12] GLMP 2 (1,2) (4,2) 5 0 2 0.0

KKY [15] GLMP 3 (1,2,2) (4,2) 3 0 2 0.0

SS1 [31] GLMP 2 (1,2) (4,2) 17 13 5 0.1

SS2 [31] GLMP 1 (1,2) (4,2) 1 0 1 0.0

Th [35] LMP 1 2 (8,4) 1 0 1 0.0

∗The second linear function takes negative values.

it via the optimality-based range reduction technique as illustrated in the previous
section.

7.1.2. Quadratic and Bilinear Programming Benchmarks

Quadratic and bilinear programs are special cases of GLMP . We use a set of sep-
arable quadratic programs from [33] and a set of quadratic and bilinear programs
from [32] to further test our algorithm for GLMP . These problems are solved
using εa = 10−6. To better compare our results with those reported in [33], we
used OSL 2 as the LP solver for this experiment.

Our results, along with those from [33] on separable quadratic programs are
summarized in Table 2. Problems and problem names reported in this table are
taken from [33]. Under entry (m, n) of this table, we report the sizes of the original
problems as well as the LP relaxation solved by the algorithm of [33]. Under entry
(m, n, t) of the table, we report the sizes of the LP relaxation problems solved by
the proposed algorithm.

Our results, along with those from [32], on quadratic and bilinear programs are
recorded in Table 3. Problems and their names used here are taken from [32].

As seen in Tables 2 and 3, our multiplicative programming algorithms are com-
petitive with the specialized QP algorithms for these problems: we usually take
fewer nodes for the larger and more difficult problems of these two problem sets.
Runs for all algorithms reported in these two tables were done on the same IBM
RS/6000 computer.

406 HONG-SEO RYOO AND NIKOLAOS V. SAHINIDIS

Table 2. Computational results on separable concave quadratic programming test problems
from the literature and comparison with results reported in [33]

Problem GLMP Algorithm of [33] Proposed algorithm

Name (m, n) (m, n, t) NT NO NM Time NT NO NM Time

BSJ2 (5,3) (20,15,6) 7 0 4 0.1 9 0 3 0.1

BSJ4 (4,6) (34,30,12) 1 1 1 0.1 5 1 2 0.1

FP1 (1,5) (26,30,10) 7 7 3 0.2 11 8 4 0.1

FP2 (2,6) (32,30,12) 1 0 1 0.1 1 1 1 0.1

FP3 (10,13) (75,65,26) 1 0 1 0.1 1 1 1 0.0

FP4 (5,6) (35,30,12) 1 1 1 0.1 1 1 1 0.0

FP5 (11,10) (61,50,20) 5 1 3 0.2 1 1 1 0.2

FP6 (5,10) (55,50,20) 9 8 4 0.2 7 0 3 0.2

FP7a (10,20) (110,10,40) 73 30 9 1.2 43 39 7 1.9

FP7b (10,20) (110,100,40) 83 32 9 1.2 39 34 7 1.7

FP7c (10,20) (110,100,40) 67 32 9 1.3 41 35 5 1.8

FP7d (10,20) (110,100,40) 59 28 9 0.9 53 42 7 2.1

FP7e (10,20) (110,100,40) 181 66 21 2.6 153 100 17 4.0

FP8 (10,24) (130,120,48) 3 3 2 0.2 7 5 2 0.7

KR (5,2) (11,10,4) 3 1 2 0.1 7 3 2 0.0

M1 (11,20) (111,100,40) 187 4 5 2.5 47 5 3 1.9

M2 (21,30) (171,150,60) 281 1 5 7.1 79 3 2 5.2

Pan1 (4,3) (19,15,6) 3 3 2 0.1 7 0 2 0.1

Pan2 (1,5) (26,25,10) 7 2 3 0.1 9 7 2 0.1

PhR1 (5,6) (35,30,12) 1 0 1 0.1 3 0 2 0.1

PhR2 (5,6) (35,30,12) 0 0 0 0.0 3 0 2 0.1

PhR3 (5,6) (35,30,12) 1 1 1 0.1 9 0 2 0.1

PhR11 (4,3) (19,15,6) 1 1 1 0.1 7 0 2 0.1

PhR12 (4,3) (19,15,6) 1 1 1 0.1 5 1 2 0.1

PhR13 (10,3) (25,15,6) 1 1 1 0.1 7 0 2 0.0

PhR14 (10,3) (25,15,6) 1 0 1 0.1 3 0 2 0.0

PhR15 (4,4) (24,20,8) 3 0 2 0.1 19 1 4 0.1

PhR20 (9,3) (24,15,6) 1 1 1 0.1 5 0 2 0.0

RV1 (5,10) (55,50,20) 33 2 4 0.3 21 11 2 0.3

RV2 (10,20) (110,100,40) 99 13 12 1.1 51 32 8 1.3

RV3 (20,20) (120,100,40) 203 23 24 2.4 97 33 10 2.3

RV7 (20,30) (170,150,60) 161 5 11 2.9 73 5 10 2.9

RV8 (20,40) (200,180,80) 165 49 18 3.2 101 81 16 5.4

RV9 (20,50) (270,250,100) 439 90 65 8.0 268 58 33 15.4

Z (5,3) (20,15,6) 7 0 4 0.1 7 0 3 0.1

GLOBAL OPTIMIZATION OF MULTIPLICATIVE PROGRAMS 407

Table 3. Computational results on quadratic and bilinear programming test prob-
lems from the literature and comparison with results reported in [32]

Problem Algorithm of [32] Proposed algorithm

Name (m, n) NT NO NM Time NT NO NM Time

AF (2,2) 21 20 5 0.1 21 15 4 0.1

AF1 (10,10) 25 1 5 0.4 1 1 1 0.1

AF1a (10,10) 1 1 1 0.1 1 1 1 0.0

AF2 (13,10) 9 0 2 0.3 9 7 3 0.1

BK (7,8) 25 18 10 0.9 27 19 9 1.2

C-M0 (2,2) 3 0 2 0.1 3 0 2 0.0

C-M1 (5,5) 1 0 1 0.1 3 3 2 0.3

C-M3a (10,10) 55 23 7 3.6 19 10 7 1.9

C-M3b (10,10) 13 0 2 0.7 11 0 2 1.6

C-M3c (10,10) 1 0 1 0.2 1 0 1 0.2

C-M4 (10,10) 1 0 1 0.2 1 0 1 0.1

GI1 (3,3) 1 1 1 0.1 465 465 54 1.9

JK1 (1,4) 92 70 6 0.8 198 195 8 0.5

JK2 (1,3) 171 167 13 0.4 98 88 13 0.2

K1 (6,4) 1 1 1 0.1 1 0 1 0.0

K3 (11,11) 117 0 28 3.5 95 0 12 1.6

SS (7,4) 163 163 36 1 185 0 46 0.5

Vh1 (4,4) 1 0 1 0.0 1 0 1 0.0

Vh2 (4,4) 1 1 1 0.0 1 1 1 0.0

7.2. COMPARATIVE COMPUTATIONAL RESULTS WITH PRIOR APPROACHES

7.2.1. Random LMP s

For extensive testing of our proposed algorithm, we generate random LMP s by
using three random problem generation schemes from the literature:

(rLMP 1)

∣∣∣∣∣∣∣∣∣
globmin

p∏
j=1

cT
j x

s. t. Ax ≥ b
x ≥ 0

where the real elements of c, A, and b are pseudo-randomly generated in the range
[0,100]. This corresponds to the way [12, 18] generates their random LMP prob-

408 HONG-SEO RYOO AND NIKOLAOS V. SAHINIDIS

lems;

(rLMP 2)

∣∣∣∣∣∣∣∣∣
globmin

2∏
j=1

(cT
j x + dj)

s. t. Ax ≤ b
x ≥ 0

whose constraint matrix elements aij are generated in [−1, 1] via aij := 2α − 1
where α are pseudo-random numbers in [0,1], and the right hand side values are
generated via bi := ∑

j aij + 2β, where β are pseudo-random numbers in [0,1].
This agrees with the way random numbers are generated in [35]; and, finally

(rLMP 3)

∣∣∣∣∣∣∣∣∣
globmin

p∏
j=1

cT
j x

s. t. Ax ≥ b
1 ≤ x ≤ u

where the elements of c and A are chosen pseudo-randomly from the set of in-
tegers {1, 2, . . . , 10} and the elements of b and u are, respectively, obtained via
the expressions bi := ∑

j a2
ij and u := max

i=1,2,... ,m
{bi}, just as in [3, 20].

For all problems, we solved 10 different random instances for each size and
present statistics of the results. In all our computational experiments, we used an
IBM RS/6000 Model 43P equipped with a 133 MHz Power PC processor and
64 MB memory. Whenever we present comparative computational results with
those obtained by earlier algorithms on different computers, we provide a descrip-
tion of the computational platform used as well as the LINPACK score of each
computer as reported in [5]. The latter provides the speed at which a dense system
of 100 linear equations is solved using standard programs from LINPACK libraries
in a FORTRAN environment.

First, we solve rLMP 1 using εa = 10−5, the termination criterion that is used
in [12, 18]. The results are provided in Table 4, alongside those from [12, 18]
obtained on a SUN4/75 computer. As seen in the LINPACK scores, the computer
used in our study is approximately 60% faster than the one used in [12, 18]. Yet, as
Table 4 demonstrates our algorithm is up to two orders of magnitude faster than the
algorithms of [12, 18] and we are able to present results on much larger problems.

Table 5 shows the growth of computing time requirements as a function of p

for rLMP 1. In this table, entry rp is computed by

rp := AvgTime for p = i

AvgTime for p = 2

GLOBAL OPTIMIZATION OF MULTIPLICATIVE PROGRAMS 409

Table 4. Computational results on rLMP1 and comparison with results repor-
ted in [12, 18]

rLMP1 Algorithm of [12, 18] Proposed algorithm

p (m, n) Avg(Std)Time Avg(Std)Time Avg(Std)NT

on SUN4/75† on RS/6000‡

2 (20,30) 0.46 (0.05) 0.3 (0.1) 9.0 (3.1)
(30,50) 1.06 (n/a) 0.8 (0.5) 14.0 (9.8)
(70,50) 7.37 (n/a) 1.8 (0.7) 15.5 (7.0)

(80,100) 17.58 (n/a) 3.8 (1.2) 14.9 (6.7)
(100,100) ∗ 5.8 (2.0) 17.5 (8.5)
(120,100) 34.43 (n/a) 8.6 (2.2) 21.3 (7.1)
(120,120) ∗ 8.9 (2.7) 15.8 (6.8)
(130,150) 59.68 (n/a) 14.7 (4.7) 20.5 (9.5)
(170,150) 105.49 (n/a) 19.8 (5.2) 18.2 (6.5)
(180,200) 206.64 (n/a) 37.6 (11.5) 18.7 (8.3)
(200,200) ∗ 50.1 (13.0) 25.8 (6.2)
(220,200) 263.04 (n/a) 48.5 (11.7) 20.5 (5.6)

3 (20,30) 1.27 (0.25) 0.8 (0.3) 39.4 (20.2)
(80,100) 43.98 (9.05) 16.0 (5.0) 86.6 (30.9)
(100,100) 59.12 (17.80) 25.6 (9.6) 90.6 (24.4)
(100,120) 115.25 (28.02) 28.9 (10.6) 96.6 (34.2)
(120,120) 178.57 (43.13) 35.3 (10.0) 82.1 (40.9)
(120,140) 181.43 (41.12) 43.9 (16.8) 97.3 (37.8)
(150,140) 381.21 (93.80) 62.1 (17.4) 100.8 (27.3)
(150,160) 427.02 (127.63) 72.9 (23.3) 105.5 (37.9)
(200,180) 914.09 (129.88) 122.9 (41.3) 90.4 (48.5)
(200,200) ∗ 149.0 (60.2) 87.3 (46.9)

4 (20,30) 14.21 (10.46) 2.6 (0.8) 158.2 (64.8)
(50,40) 49.05 (46.44) 10.4 (4.0) 222.89 (89.4)
(50,60) 95.05 (32.49) 13.6 (5.1) 196.9 (76.3)
(60,80) 155.10 (66.54) 28.1 (6.3) 262.5 (61.7)

(80,100) 330.55 (101.87) 56.1 (17.2) 294.4 (86.3)
(100,100) 524.49 (210.27) 61.0 (21.1) 243.8 (117.8)
(100,120) 617.51 (141.65) 86.1 (35.9) 305.9 (126.8)
(120,120) 1154.83 (381.51) 94.2 (23.3) 271.4 (70.2)
(200,200) ∗ 396.3 (189.4) 301.4 (171.7)

5 (20,30) 1170.36 (950.53) 6.0 (2.0) 370.8 (108.2)
(100,100) ∗ 197.9 (38.4) 830.8 (148.3)
(120,120) ∗ 245.4 (97.0) 686.0 (285.2)
(200,200) ∗ 1381.1 (860.1) 1047.5 (693.1)

†LINPACK score of 4.1.
‡LINPACK score of 6.7.
n/a, Not provided in [12, 18].
∗Problems of this size not solved in [12, 18].

410 HONG-SEO RYOO AND NIKOLAOS V. SAHINIDIS

Table 5. Growth in computing time as a function of p

rLMP1 Normalized AvgTime

Algorithm of [18] Proposed Algorithm

(m, n) r2 r3 r4 r5 r2 r3 r4 r5

(20,30) 1 3 31 2544 1 3 10 23

(100,100) ∗ ∗ ∗ ∗ 1 4 10 34

(120,120) ∗ ∗ ∗ ∗ 1 4 11 28

(200,200) ∗ ∗ ∗ ∗ 1 3 8 28

∗: Problems of this size not solved in [18].

Table 6. Computational results on rLMP2 (p = 2) and comparison
with results reported in [35]

rLMP2 Algorithm of [35] Proposed algorithm

(m, n) Time on PS2† NT Avg(Std)Time Avg(Std)NT

on RS/6000‡

(10,20) 1.85 9 0.1 (0.1) 6.2 (4.3)

(20,20) 3.65 16 0.2 (0.1) 7.0 (2.8)

(22,20) 4.05 14 0.2 (0.1) 8.8 (4.2)

(20,30) 5.04 16 0.3 (0.1) 8.0 (3.6)

(35,50) 19.88 20 1.0 (0.4) 11.0 (3.5)

(45,60) 81.22 26 1.2 (0.3) 13.3 (4.9)

(45,100) 240.50 30 3.9 (1.2) 15.2 (6.0)

(60,100) 290.12 30 5.6 (1.2) 14.8 (3.8)

(70,100) 511.38 30 6.5 (3.0) 17.5 (7.2)

(70,120) 560.75 31 9.0 (1.8) 17.2 (4.8)

(100,100) 635.06 32 7.6 (1.0) 13.3 (4.3)

(102,150) 2823.13 40 15.9 (2.9) 24.8 (7.0)

(102,190) 3187.93 40 21.4 (3.5) 28.4 (7.5)

(72,199) 2298.88 45 18.3 (6.2) 25.5 (8.3)

(110,199) 8068.84 49 22.7 (3.0) 21.7 (5.7)

†: LINPACK score of 0.15.
‡: LINPACK score of 6.7.

for i = 2, 3, 4, and 5 for each problem size. For comparison, we provide the same
information for the algorithm of [18] in Table 5. Clearly, our algorithm exhibits
much slower growth of computational requirements.

rLMP 2 are next solved using εa = 10−6 as in [35]. Table 6 summarizes our
computational results and those reported in [35]. The results from [35] are obtained

GLOBAL OPTIMIZATION OF MULTIPLICATIVE PROGRAMS 411

Table 7. Comparative results on rLMP2

Normalized values

rLMP2(p = 2) Algorithm of [35] Proposed algorithm

(m, n) Time NT (Avg)Time (Avg)NT

(10,20) 1 1 1 1

(20,20) 2 2 1 1

(20,30) 3 2 2 1

(45,60) 44 3 8 2

(70,100) 276 3 46 3

(100,100) 343 4 54 2

(102,150) 1526 4 114 4

(110,199) 4362 5 162 4

on an IBM-PS2 Model 80 computer (much slower than our computer as shown by
the LINPACK scores). Comparative results on rLMP 2 by the two algorithms are
provided in Table 7, whose entries are the normalized requirements in (average)
CPU seconds and the total number of iterations with respect to the ones for 10×20
rLMP 2 problem obtained by computing the ratio:

Time (NT) on m × n problem

Time (NT) on 10 × 20 problem

Table 7 also shows that our algorithm possesses a good average-case performance.
For example, compare the very first and the last (Avg)Time r2 entries in this table
for our algorithm. We see that our algorithm requires only 162 times more com-
puting time for solving problems that are 109 times larger than the base problems
in terms of the constraint matrix size. This is almost linear. In contrast, the CPU
requirements of the algorithm of [35] grow an order of magnitude faster.

We next compare our (exact) algorithm to two heuristic methods proposed for
LMP from the literature [3, 20]. For this experiment, we solve various sized
rLMP 3 using two termination criteria, εr = 0.005 and εa = 10−5. Our results as
well as those from [3, 20] are summarized in Table 8. In this table, r for heuristic
solutions denotes the average efficiency rating defined by

r := 1 − zH − zmin

zmax − zmin

where zH is the objective function value returned by the heuristic methods of [3,
20], zmin and zmax are the global minimum and maximum, respectively, of the
problem over the corresponding set of efficient extreme points ME,ex := ME∩Mex ,
where ME and Mex are the set of efficient solutions and the set of extreme points of

412 HONG-SEO RYOO AND NIKOLAOS V. SAHINIDIS

Table 8. Computational results on rLMP3 and comparison with heuristic results reported
in [3, 20].

rLMP3 Heuristic of [3] Heuristic of [20] Proposed algorithm

p (m, n) r Time1 r Time2 AvgTime3 AvgTime3

(εr = 0.005) (εa = 10−5)

2 (25,20) 1.000 0.227 1.000000 0.25 0.1 0.2

(25,30) 1.000 0.241 0.999995 0.42 0.1 0.2

(30,40) 1.000 0.389 1.000000 0.78 0.2 0.4

(40,30) 0.999 0.328 0.999997 0.61 0.2 0.3

(40,50) 1.000 0.504 0.999991 1.66 0.4 0.5

(50,40) 0.999 0.453 0.999936 1.45 0.4 0.6

(50,60) 1.000 0.556 0.998955 4.17 0.6 1.0

(60,70) 1.000 1.070 0.992580 7.45 0.8 1.2

3 (25,20) 0.985 0.321 0.999991 0.34 0.2 0.4

(25,30) 0.960 0.469 0.999935 0.39 0.3 0.6

(30,40) 0.987 0.543 0.999802 1.22 0.7 1.2

(40,30) 0.993 0.609 0.999971 0.91 0.5 1.0

(40,50) 0.920 0.967 0.997156 2.02 1.0 1.7

(50,40) 0.993 0.908 0.998923 1.68 0.8 1.4

(50,60) 0.995 1.298 0.992008 4.26 1.7 3.3

(60,70) 0.969 2.495 ∗ ∗ 2.0 4.07

4 (25,20) 0.998 0.426 0.999912 0.38 0.5 1.0

(25,30) 0.992 0.598 0.999022 1.11 0.8 1.3

(30,40) 0.986 1.019 0.999941 1.25 1.5 2.9

(40,30) 0.978 0.998 0.997706 1.19 1.0 1.8

(40,50) 0.969 1.539 0.998237 2.17 2.8 5.0

(50,40) 0.969 1.587 0.990254 1.84 2.5 4.2

(50,60) 0.980 1.901 ∗ ∗ 4.4 8.9

5 (10,20) 0.993 0.353 0.999994 1.84 0.5 0.8

(20,10) 0.998 0.294 0.999159 0.16 0.3 0.5

(25,30) 0.995 0.962 0.987431 2.23 1.7 3.1

1CPU seconds on IBM ES/9000 (LINPACK score of 86).
2CPU seconds on HP Apollo 715/75 (LINPACK score of 29).
3CPU seconds on RS/6000 (LINPACK score of 6.7).
∗Problems of this size not solved in [20].

GLOBAL OPTIMIZATION OF MULTIPLICATIVE PROGRAMS 413

Table 9. Comparative results on rLMP3 (p = 3)

rLMP3 (p = 3) Normalized AvgTime

(m, n) Heuristic of [3] Heuristic of [20] Proposed algorithm

(25,20) 1 1 1

(25,30) 2 1 2

(30,40) 2 4 3

(40,30) 2 3 2

(40,50) 3 6 5

(50,40) 3 5 4

(50,60) 4 13 8

(60,70) 8 ∗ 9

∗Problems of this size not solved in [20].

the feasible set M (= {x ∈ R
n : Ax ≥ b, l ≤ x ≤ u}) of rLMP 3. Hence, the closer

r is to 1, the better the quality of the heuristic solution is. Computational results in
[3, 20] are, respectively, obtained on an IBM ES/900 Model 831 computer and on
an HP Apollo Model 715/15 computer. Both are faster than our computer as shown
by the LINPACK scores.

The performance of the three algorithms as a function of the problem size for
p = 3 is shown in Table 9. The entries in this table are the normalized average
CPU times on m×n rLMP 3 with respect to the average time on 25×20 rLMP 3
for p = 3 by the three algorithms:

(Avg)Time on m × n problem

(Avg)Time on 25 × 20 problem

One can see from these results that the computational requirements of our global
optimization algorithm grow similarly to those of the heuristic procedures de-
veloped for solving LMP .

7.2.2. Random GLMP s

We follow the random number generation scheme of [18, 15] and generate the
elements of cij , A, and b pseudo-randomly from the range [0,100] and set di,j = 0.
These problems are solved using εa = 10−5, the same termination criterion as the
one used in [18, 15]. Our computational results are provided in Table 10, alongside
those from [18, 15]. The results reported in [18, 15] are obtained on a SUN4/280S
workstation. Clearly, we are able to solve much larger problems than those reported
in the past.

In order to examine how the average-case performance of our algorithm for
GLMP is affected by problem size, we provide Table 11. For each of the problem
sizes (m, n) = (30, 20), (30, 50), and (70, 50), an entry ri,p (i = 2, 3, 4) in Table

414 HONG-SEO RYOO AND NIKOLAOS V. SAHINIDIS

Table 10. Computational results on randomly generated GLMP and comparison with results
reported in [18, 15]

GLMP Algorithm of Proposed algorithm
t p (m, n) [18, 15] Avg(Std)Time Avg(Std)NT

on SUN4/280S† on RS/6000‡

2 (1,2) (150,100) 48.8 (n/a) 26.4 (3.9) 60.7 (10.6)
(150,150) 65.7 (n/a) 45.2 (13.8) 70.8 (20.3)
(200,150) 118.7 (n/a) 61.4 (30.3) 64.0 (30.8)
(200,200) 145.9 (n/a) 86.8 (37.6) 67.8 (35.6)
(250,200) 230.9 (n/a) 103.2 (24.2) 63.8 (14.1)
(250,250) 316.9 (n/a) 141.2 (14.5) 73.5 (8.9)
(300,250) 416.0 (n/a) 169.5 (61.8) 72.3 (22.6)
(300,300) 454.0 (n/a) 294.5 (125.0) 96.6 (32.4)
(350,300) 637.1 (n/a) 276.5 (164.9) 73.6 (29.6)

(2,2) (30,20) 5.4 (1.8) 2.3 (0.6) 121.7 (28.9)
(30,50) 25.9 (5.1) 9.0 (4.3) 176.0 (75.6)
(70,50) 55.6 (14.8) 20.3 (8.2) 211.6 (74.1)

(3,3) (30,20) ∗ 17.5 (6.0) 827.8 (297.8)
(30,50) ∗ 73.6 (41.9) 1326.9 (754.4)
(70,50) ∗ 180.8 (54.5) 1997.6 (668.2)

(4,4) (30,20) ∗ 88.7 (43.1) 3387.8 (1627.4)
(30,50) ∗ 715.0 (404.0) 12702.9 (6996.3)
(70,50) ∗ 1936.6 (1028.7) 14984.3 (5487.8)

3 (2,2,2) (30,20) 49.3 (33.1) 7.8 (3.4) 388.5 (179.1)
(30,50) 202.7 (74.2) 23.9 (13.6) 457.9 (251.3)
(70,50) 1087.7 (900.4) 57.3 (28.0) 673.2 (378.6)

(3,3,3) (30,20) ∗ 80.7 (27.2) 3417.8 (1044.2)
(30,50) ∗ 733.9 (605.0) 12321.0 (7672.4)
(70,50) ∗ 1323.1 (468.7) 13638.4 (4683.6)

(4,4,4) (30,20) ∗ 1333.6 (1234.9) 29417.2 (12623.5)

4 (2,2,2,2) (30,20) 416.5 (233.2) 12.2 (4.3) 603.6 (234.5)
(30,50) 3897.6 (2158.6) 58.2 (25.9) 1256.2 (596.9)
(70,50) ∗ 141.5 (62.2) 1734.0 (734.4)

(3,3,3,3) (30,20) ∗ 546.0 (269.6) 18469.9 (7058.1)
(30,50) ∗ 3620.9 (2053.6) 50751.7 (22798.2)
(70,50) ∗ 12016.0 (4988.7) 84138.3 (27161.2)

(4,4,4,4) (30,20) ∗ 4872.5 (1811.0) 131316.9 (47267.9)

†LINPACK score of 4.1.
‡LINPACK score of 6.7.
∗Problems of this size not solved in [18, 15].

GLOBAL OPTIMIZATION OF MULTIPLICATIVE PROGRAMS 415

Table 11. Growth in computing time as a function of t for
proposed algorithm for GLMP , and comparison with results
reported in [15]

Normalized AvgTime

GLMP Algorithm of [15] Proposed Algorithm

p (m, n) r2,p r3,p r4,p r2,p r3,p r4,p

2 (30,20) 1 9 77 1 3 5

(30,50) 1 8 150 1 3 6

(70,50) 1 20 ∗ 1 3 7

3 (30,20) ∗ ∗ ∗ 1 5 31

(30,50) ∗ ∗ ∗ 1 10 49

(70,50) ∗ ∗ ∗ 1 7 66

4 (30,20) ∗ ∗ ∗ 1 15 55

∗: Problems of this size not solved in [15].

Table 12. Growth in computing time as a function of p

for proposed algorithm for GLMP , and comparison with
results reported in [15]

Normalized AvgTime

GLMP Algorithm of [15] Proposed Algorithm

t (m, n) rt,2 rt,3 rt,4 rt,2 rt,3 rt,4

2 (30,20) 1 ∗ ∗ 1 8 38

(30,50) 1 ∗ ∗ 1 8 79

(70,50) 1 ∗ ∗ 1 9 95

3 (30,20) 1 ∗ ∗ 1 10 171

4 (30,20) 1 ∗ ∗ 1 45 399

∗: Problems of this size not solved in [15].

11 represents

ri,p = AvgTime for t = i for p

AvgTime for t = 2 for p

416 HONG-SEO RYOO AND NIKOLAOS V. SAHINIDIS

for each fixed value of p = 2, 3, and 4. Likewise, each entry rt,i (i = 2, 3, 4) in
Table 12 is computed by

rt,i = AvgTime for p = i for t

AvgTime for p = 2 for t

for each fixed value of t = 2, 3, and 4.
For comparison with other approaches, we provide rt,2 (t = 2, 3, 4) values

obtained from the results reported in [15] in the lower parts of Tables 11 and 12.
Clearly, our algorithms exhibit a slower growth of computational requirements as
the problem size increases.

8. Conclusions

In this paper, we developed specialized global optimization algorithms for multi-
plicative programs based upon bounding of monomial functions and a new greedy
branching principle for rectangular branch-and-bound. Extensive computational
experiments with the proposed algorithms on problems from the literature and
also randomly generated instances suggest that our algorithms are very efficient
for solving multiplicative programs. These algorithms make possible for the first
time the solution of large and complex multiplicative programs to global optimal-
ity. Even when compared with a specialized algorithm for solving quadratic and
bilinear programming problems and when tested against heuristic approaches for
linear multiplicative programs, the proposed algorithms performed competitively.

Acknowledgements

The authors acknowledge partial financial support from the National Science
Foundation under award ECS-0098770.

References

1. Bennett, K.P. (1994), Global tree optimization: A non-greedy decision tree algorithm. Comput-
ing Sciences and Statistics 26, 156–160.

2. Bennett, K.P. and Mangasarian, O.L. (1994), Bilinear separation of two sets in n−space.
Computational Optimization and Applications 2, 207–227.

3. Benson, H.P. and Boger, G. M. (1997), Multiplicative programming problems: analysis and
efficient point search heuristic. Journal of Optimization Theory and Applications 94(2), 487–
510.

4. Benson, H.P. and Boger, G.M. (2000), Outcome-space cutting-plane algorithm for linear mul-
tiplicative programming. Journal of Optimization Theory and Applications 104(2), 301–322.

5. Dongarra, J.J. Performance of Various Computers Using Standard Linear Equations Software.
Technical Report Technical Report CS-85-89, Computer Science Department at University
of Tennessee, Knoxville, TN and Mathematical Sciences Section at Oak Ridge National
Laboratory, Oak Ridge, TN 37831, 1985.

GLOBAL OPTIMIZATION OF MULTIPLICATIVE PROGRAMS 417

6. Dorneich, M.C. and Sahinidis, N.V. (1995), Global optimization algorithms for chip design and
compaction. Engineering Optimization 25(2), 131–154.

7. Falk, J.E. and Palocsa, S.W. (1994), Image space analysis of generalized fractional programs.
Journal of Global Optimization 4(1), 63–88.

8. Henderson, J.M. and Quandt, R.E. (1971), Microeconomic Theory. 2nd edition, McGraw-Hill,
New York.

9. Keeney, R.L. and Raiffa, H. (1993), Decisions with Multiple Objective. Cambridge University
Press, Cambridge, MA.

10. Konno, H. and Kuno, T. (1989), Linear Multiplicative Programming. Technical Report IIISS
89-13, Institute of Human and Social Sciences, Tokyo Institute of Technology, Tokyo, Japan.

11. Konno, H. and Kuno, T. (1990), Generalized linear multiplicative and fractional programming.
Annals of Operations Research 25, 147–162.

12. Konno, H. and Kuno, T. (1992), Linear multiplicative programming. Mathematical Program-
ming 56, 51–64.

13. Konno, H. and Kuno, T. (1995), Multiplicative programming problems. In: R. Horst and P.M.
Pardalos, (eds.), Handbook of Global Optimization,Kluwer Academic Publisher, Norwell, MA.
p.369–405.

14. Konno, H., Kuno, T. and Yajima, Y. (1992), Parametric simplex algorithms for a class
of N P−complete problems whose average number of steps is polynomial. Computational
Optimization and Applications 1, 227–239.

15. Konno, H., Kuno, T. and Yajima, Y. (1994), Global optimization of a generalized convex
multiplicative function. Journal of Global Optimization 4, 47–62.

16. Konno, H., Shirakawa, H. and Yamazaki, H. (1993), A mean-absolute deviation-skewness
portfolio optimization model. Annals of Operations Research 45, 205–220.

17. Konno, H., Yajima, Y. and Matsui. T. (1991), Parametric simplex algorithms for solving a
special class of nonconvex minimization problems. Journal of Global Optimization 1, 65–81.

18. Kuno, T., Yajima, Y. and Konno, H. (1993), An outer approximation method for minimizing
the product of several convex functions on a convex set. Journal of Global Optimization 3(3),
325–335.

19. Liu, M.-L., Sahinidis, N.V. and Shectman, J.P. (1996), Planning of chemical process networks
via global concave minimization. In: I.E. Grossmann, (ed.), Global Optimization in Engineer-
ing Design, Vol. 9, Nonconvex Optimization and Its Applications, Kluwer Academic Publishers,
Norwell, MA, p. 195–230.

20. Liu, X.J., Umegaki, T. and Yamamoto, Y. (1999), Heuristic methods for linear multiplicative
programming. Journal of Global Optimization, 4(15), 433–447.

21. Maling, K., Mueller, S.H. and Heller, W.R. (1982), On finding most optimal rectangular
package plans. In: Proceedings of the 19th Design Automation Conference, p. 663–670.

22. Maranas, C.D., Androulakis, I.P., Floudas, C.A., Berger, A.J. and Mulvey J.M.(1997), Solving
long-term financial planning problems via global optimization. Journal of Economic Dynamics
& Control, 21, 1405–1425.

23. Markowitz, H.M. (1991), Portfolio Selection. Basil Blackwell Inc., Oxford, 2nd edition.
24. Matsui, T. (1996), N P−Hardness of linear multiplicative programming and related problems.

Journal of Global Optimization 9(2), 113–119.
25. McCormick, G.P. (1983), Nonlinear Programming. Theory, Algorithms, and Applications.

Wiley Interscience, New York.
26. Mulvey, J.M., Vanderbei, R.J. and Zenios, S.A. (1995), Robust optimization of large-scale

systems. Operations Research 43, 264–281.
27. Pardalos, P.M. (1990), Polynomial time algorithms for some classes of constrained quadratic

problems. Optimization 21(6), 843–853.
28. Quesada, I. and Grossmann, I.E. (1996), Alternative bounding approximations for the global

optimization of various engineering design problems. In I.E. Grossmann, (ed.), Global Optim-

418 HONG-SEO RYOO AND NIKOLAOS V. SAHINIDIS

ization in Engineering Design, Vol. 9 Nonconvex Optimization and Its Applications, Kluwer
Academic Publishers, Norwell, MA, p 309–331.

29. Ryoo, H.S. and Sahinidis, N.V. (1996), A branch and reduce approach to global optimization.
Journal of Global Optimization 8(2), 107–138.

30. Ryoo, H.S. and Sahinidis, N.V. (2001), Analysis of bounds for multilinear functions. Journal
of Global Optimization 19(4), 403–424,

31. Schaible, S. and Sodini, C. (1995), Finite algorithm for generalized linear multiplicative
programming. Journal of Optimization Theory and Applications 87(2), 441–455.

32. Shectman, J.P. (1999), Finite Algorithms for Global Optimization of Concave Programs and
General Quadratic Programs. PhD thesis, University of Illinois at Urbana, 1999.

33. Shectman, J.P. and Sahinidis, N.V. (1998), A finite algorithm for global minimization of
separable concave programs. Journal of Global Optimization 12(1), 1–36.

34. Swarup, K. (1966), Quadratic Programming. Cahiers du Centre d’Études de Recherche
Opérationnelle 8, 223–234.

35. Thoai, N.V. (1991), A global optimization approach for solving the convex multiplicative
programming problems. Journal of Global Optimization 1(4), 341–357.

